

离散数学(011122)

魏可佶 <u>kejiwei@tongji.edu.cn</u> <u>https://kejiwei.github.io/</u>

- 4.1 Definition and Representation of Relations
- 4.2 Relational Operations
- 4.3 Properties of Relations
- 4.4 Equivalence Relations and Partial Order
 - Relations

- 4.1.1 Ordered Pairs and Cartesian Product
- 4.1.2 Definition of Binary Relations
- 4.1.3 Representation of Binary Relations

Definition 4.1- Ordered Pairs

A pair of elements x and y arranged in a specific order is called an *ordered pair* (or sequence), denoted as $\langle x, y \rangle$

Example:

The Cartesian coordinates of a point: (3,-4)

Properties of Ordered Pairs

• Order $\langle x, y \rangle \neq \langle y, x \rangle$ (when $x \neq y$)

The necessary and sufficient condition for <x,y>=<u,v> is
 <x,y>=<u,v> ⇔ x=u ∧ y=v

Solve: 3y-4=2, $x+5=y \Rightarrow y=2$, x=-3

Definition 4.2- Cartesian product

Let A and B be sets, the Cartesian product of A and B is denoted as A×B,

```
A \times B = \{ \langle x, y \rangle \mid x \in A \land y \in B \}.
```


4.1.1 Ordered Pairs and Cartesian Product Properties of the Cartesian Product Empty Set Interaction: If either A or B is an empty set, then A \times B is the empty set. A $\times \emptyset = \emptyset \times B = \emptyset$ Not suitable for the commutative property: $A \times B \neq B \times A$ ($A \neq B, A \neq \emptyset, B \neq \emptyset$) Not suitable for the associative property: $(A \times B) \times C \neq A \times (B \times C)$ $(A \neq \emptyset, B \neq \emptyset, C \neq \emptyset)$ The union and intersection operations satisfy the distributive property. $A \times (B \cup C) = (A \times B) \cup (A \times C)$ $(B \cup C) \times A = (B \times A) \cup (C \times A)$ $A \times (B \cap C) = (A \times B) \cap (A \times C)$ $(B \cap C) \times A = (B \times A) \cap (C \times A)$ Cardinality Multiplication Property:

If |*A*|=*m*, |*B*|=*n*, then |*A*×*B*|=*mn*

4.1.1 Ordered Pairs and Cartesian Product h n-dimensional Cartesian product

同济经管 TONGJI SEM

Definition 4.3: n-dimensional Cartesian product

 An ordered n-tuple is formed by arranging n elements
 x₁,x₂,..., in a specific order, denoted as ⟨ x₁,x₂,..., x_n⟩
 Let A₁,A₂,..., be sets., Then the Cartesian product
 A₁×A₂×···×A_n={⟨x₁,x₂,...,x_n⟩|x_i∈A_i,i=1,2,...,n}
 is called the *n-dimensional* (n-ary) *Cartesian product*.

 ***Example:

(1,1,0) is the Cartesian coordinate of a point in space, $(1,1,0) \in \mathbf{R} \times \mathbf{R} \times \mathbf{R}(1, 1, 0)$.

间济经管 TONGJI SEM

Definition 4.4- Binary Relations

A set is called a *binary relation*, denoted as *R*, if it satisfies one of the following conditions:

(1) The set is non-empty, and its elements are ordered pairs.

(2) The set is empty.

• For example, if $\langle x,y \rangle \in R$, it can be written as x R y; if $\langle x,y \rangle \notin R$, it can be written as x R y

searchistic Example:

 $R = \{\langle 1,2 \rangle, \langle a,b \rangle\}, S = \{\langle 1,2 \rangle, a,b\}$

• **R** is a binary relation, but **S** is not a binary relation because *a* and *b* are not ordered pairs.

• Using the above notation, we can write 1R2, aRb, aRb, aRb, a, etc.

Example:

={<0,0>, <0,1>, <0,2>, <1,0>, <1,1>, <2,0>}

(2) $C = \{\langle x, y \rangle \mid x, y \in R, x^2 + y^2 = 1\}$, Where R represents the set of real numbers, C is the relation between the horizontal and vertical coordinates of points in the Cartesian coordinate plane, and all points in C exactly form the unit circle in the coordinate plane.

(3) $R = \{ \langle x, y, z \rangle \mid x, y, z \in R, x + 2y + z = 3 \},$ **R** represents a plane in the 3D Cartesian coordinate system.

The employee payroll (relation) is a set of *5-tuples representing* employees:<301,B,25,M,19000>, <302,O,23,F,18500>

ID No.	Name	Age	Gender	Salary
301	В	25	Μ	19000
302	0	23	F	18500
303	Y	37	Μ	25000
304	Μ	31	Μ	22000
•••	•••	•••	•••	•••

Definition 4.5

- Let A and B be sets. Any subset of A×B that defines a binary relation is called a *binary relation from A to B*. When *A=B*, it is called a *binary* relation on A.
- Counting:
 - |A| = n, |B| = m, $|A \times B| = nm$, and there are 2^{nm} subsets of $A \times B$. Therefore, there are 2^{nm} different binary relations from A to B.
 - If |A| = n, there are 2^{n^2} different binary relations on A.
 - •For example, if |A|=3, then there are 512 different binary relations on A.
- **Note:** Sets are the static carriers of relations, while relations are the dynamic interaction rules between sets.

- Let A be any set. The empty set Ø is considered as the empty relation on A.
- Definition 4.6:
 - *E_A* is called the *universal relation* on *A*, where
 E_A={<*x*,*y*> | *x*∈*A*∧*y*∈*A*}=*A*×*A*
 - *I_A* is called the *identity relation* on *A*, where
 I_A={<*x*,*x*> | *x*∈*A*}

Definition 4.7:

The less than or equal to relation L_A , the divides relation D_B , and the containment relation R_{c} are defined as follows:

- $L_A = \{ \langle x, y \rangle \mid x, y \in A \land x \leq y \}, A \subseteq \mathbb{R}, \mathbb{R} \text{ is the set of real numbers.}$
- *D*_B={<x,y>| x,y∈B∧x divides y}, *B*⊆Z*, Z* is the set of non-zero integers.

•
$$R_{\subseteq}$$
 ={| x,y \in A \land x \subseteq y}, where A is a family of sets..

Example:
$$A = \{1, 2, 3\}, B = \{a, b\}, \text{ then}$$

 $L_A = \{<1, 1>, <1, 2>, <1, 3>, <2, 2>, <2, 3>, <3, 3>\}$
 $D_A = \{<1, 1>, <1, 2>, <1, 3>, <2, 2>, <3, 3>\}$

4.1.2 Definition of Binary Relations • Less than or equal to relation(L_A), Divides relation(D_B), Containment relation(R_{\subseteq})

**** Example: B={a,b}, A=P(B)={Ø,{a},{b},{a,b}}, then the inclusion relation on A is : R_={<Ø,Ø>,<Ø,{a}>,<Ø,{b}>,<Ø,{a,b}>,<{a},{a}>, <{a},{a,b}>,<{b},{b}>,<{b},{a,b}>,<{a,b},{a,b}>,<{a,b}},<</pre>

Similarly, greater than or equal to relations, less than relations, greater than relations, proper inclusion relations, etc., can also be defined.

Ways to Represent Relations:

Set-theoretic expression of relations; Relational matrix; Relational graph

Definition 4.8: Relational Matrix

If $A = \{x_1, x_2, ..., x_m\}$ and $B = \{y_1, y_2, ..., y_n\}$ and R is a relation from A to B, then the *relational matrix* of R is the Boolean matrix $M_R = [r_{ij}]_{m \times n}$, where

$$r_{ij} = 1 \Leftrightarrow \langle x_i, y_j \rangle \in R.$$

Definition 4.9: Relational Graph

If $A = \{x_1, x_2, ..., x_m\}$, and R is a relation on A, the relational graph of R is $G_R = \langle A, R \rangle$, where A is the set of vertices and R is the set of edges. If $\langle x_i, x_j \rangle$ belongs to R, there is a directed edge from x_i to x_j in the graph.

一 同济经管 TONGJI SEM

Note: Let *A* and *B* be finite sets.

- **Relational matrices** are suitable for representing relations from *A* to *B* or relations on *A*.
- **Relational graphs** are suitable for representing relations on *A*.

Example: $A=\{a, b, c, d\}, R=\{\langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle d, b \rangle\},$ The relationship matrix M_R and he relationship graph G_R

$$M_R = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Objective :

Key Concepts :

